KESEBANGUNAN
1. Dua bangun datar yang sebangun
Kedua bangun di atas, ABCD dan KLMN adalah dua bangun yang sebangun, karena memiliki sifat-sifat sebagai berikut :
a. Pasangan sisi yang bersesuaian mempunyai perbandingan yang sama, yaitu:
Pasangan sisi AD dan KN =
Pasangan sisi AB dan KL =
Pasangan sisi BC dan LM =
Pasangan sisi CD dan MN =
Jadi,
b. Besar sudut yang bersesuaian sama, yaitu :
2. Dua segi tiga yang sebangun
Segitiga ABC dan PQR adalah sebangun, karena memiliki sifat :
a. Perbandingan sisi yang sama besar bersesuaian sama besar, yaitu :
AC bersesuaian dengan PR =
AB bersesuaian dengan PQ =
BC bersesuaian dengan QR =
Jadi,
Jadi,
b. Besar sudut-sudut yang bersesuaian sama, yaitu :
Perhatikan segitiga berikut !
dan sebangun, maka :
Pada segitiga siku-siku dapat dibuat garis tinggi ke sisi miring, maka diperoleh rumus :
AB2 = BD x BC
AC2 = CD x CB
AD2 = BD x CD
Kongruenan Bangun
1. Dua bangun datar yang kongruen
Perhatikan dua bangun datar berikut !
KL = PQ
LM = QR
MN = RS
NK = SP
KLMN dan PQRS kongruen. Dua bangun dikatakan kongruen jika kedua bangun tersebut memiliki bentuk dan ukuran yang sama.
2. Dua segitiga yang kongruen
Secara geometris dua segitiga konsruen adalah dua segitiga yang saling menutpi dengan tepat. Sifat dua segitiga kongruen :
a. Pasangan sisi-sisi yang bersesuaian sama panjang.
b. Sudut yang bersesuaian sama besar.
Syarat dua segitiga kongruen adalah sebagai berikut :
a.
Tiga sisi yang bersesuaian sama besar (sisi, sisi, sisi)
AB = PQ (sisi)
AC = PR (sisi)
BC = QR (sisi)
b.
Dua sisi dan satu sudut apit yang bersesuaian sama besar (sisi, sudut, sisi)
AB = PQ (sisi)
BC = QR (sisi)
c. Satu sisi api dan dua sudut bersesuaian sama besar (sudut, sisi, sudut)
AC = RP (sisi)
Menghitung Panjang Salah Satu Sisi yang Belum Diketahui dari Dua Segitiga yang Sebangun
Konsep kesebangunan dua segitiga dapat digunakan untuk menghitung panjang salah satu sisi segitiga sebangun yang belum diketahui. Coba perhatikan contoh berikut! Contoh : Diketahui ∆ ABC sebangun dengan ∆ DEF. Tentukan EF ? jawab:
Garis-Garis Sejajar pada Sisi Segitiga
Pada Gambar Dibawah, ∆ ABC dan ∆ DEC sebangun. Berikut akan ditentukan perbandingan ruas garis dari kedua segitiga tersebut. Perhatikan Gambar dibawah.
Dari gambar tersebut terlihat bahwa ruas garis .DE // AB sehingga diperoleh ﮮ ACB = ﮮ DCE (berimpit) ﮮ CAB = ﮮ CDE (sehadap) Karena dua sudut yang bersesuaian dari ∆ ABC dan ∆ DEC sama besar maka kedua segitiga itu sebangun. Karena sebansun maka berlaku
Kedua ruas dikalikan (a + d)(c + b) sehingga diperoleh
Contoh: Dalam ∆ PRT, PT//QS, hitunglah QR dan ST! Jawab :
KEKONGRUENAN
Pengertian Segitiga yang Kongruen
Pengubinan pada lantai yang telah kita kenal dapat digunakan untuk memahami pengertian kongruen. Pola pengubinan yang kita gunakan adalah pengubinan bangun segitiga. Perhatikan Gambar disamping Jika dilakukan pergeseran atau pemutaran terhadap salah satu ubin maka segitiga tersebut akan menempati ubin yang lain dengan tepat. Keadaan tersebut menunjukkan bahwa ubin yang satu dengan ubin yang lain mempunyai bentuk sama (sebangun) dan mempunyai ukuran yang sama. Segitiga-segitiga yang mempunyai bentuk dan ukuran yang sama disebut segitiga-segitiga yang kongruen (sama dan sebangun).
Sifat-Sifat Dua Segitiga yang Kongruen
Untuk dapat memahami sifat-sifat dua segitiga yang kongruen, perhatikan Gambar diatas ini. Karena segitiga-segitiga yang kongruen mempunyai bentuk dan ukuran yang sama maka masing-masing segitiga jika diimpitkan akan tepat saling menutupi satu sama lain. Gambar di samping menunjukkan ∆, PQT dan ∆ QRS kongruen. Perhatikan panjang sisi-sisinya. Tampak bahwa PQ = QR, QT = RS. dan QS = PT sehingga sisi-sisi yang bersesuaian dari kedua segitiga sama panjang. Selanjutnya, perhatikan besar sudut-sudutnya. Tampak bahwa ﮮ TPQ = ﮮ SQR, ﮮ PQT = ﮮ QRS , dan ﮮ PTQ = ﮮ QSR sehingga sudut-sudut yang bersesuaian dari kedua segitiga tersebut sama besar. Dari uraian di atas. dapat disimpulkan sebagai berikut. Dua buah segitiga dikatakan kongruen jika dan hanya jika memenuhi sifat-sifat berikut.
- Sisi-sisi yang bersesuaian sama panjang.
- Sudut-sudut yang bersesuaian sama besar.
Syarat Dua Segitiga Kongruen
Dua segitiga dikatakan kongruen jika dipenuhi salah satu dari tiga syarat berikut.
- Ketiga pasang sisi yang bersesuaian sama panjang (sisi, sisi, sisi).
- Dua sisi yang bersesuaian sama panjang dan sudut yang dibentuk oleh sisi-sisi itu sama besar (sisi, sudut, sisi).
- Dua sudut yang bersesuaian sama besar dan sisi yang menghubungkan kedua titik sudut itu sama panjang (sudut, sisi, sudut).
- Ketiga Pasang Sisi yang Bersesuaian Sama Panjang (Sisi, Sisi, Sisi)
Dua segitiga di bawah ini, yaitu ∆ ABC dan ∆ DEF mempunyai panjang sisi-sisi yang sama.
Perbandingan yang senilai untuk sisi-sisi yang bersesuaian menunjukkan bahwa kedua segitiga tersebut sebangun. Karena sebangun maka sudut-sudut bersesuaian juga sama besar, yaitu ﮮ A= ﮮ D, ﮮ B= ﮮ E,dan ﮮ C= ﮮ F. Karena sisi-sisi yang bersesuaian sama panjang dan sudut-sudut yang bersesuaian sama besar maka ∆ ABC dan ∆ DEF kongruen.
- Dua Sisi.yang Bersesuaian Sama Panjang dan Sudut yang Dibentuk oleh Sisi-Sisi itu Samar Besar (Sisi, Sudut, Sisi)
Pada gambar di atas, diketahui bahwa AB = DE, AC = DF, dan ﮮ CAB = ﮮ EDF. Apakah ∆ ABC dan ∆ DEF kongruen? Jika dua segitiga tersebut diimpitkan maka akan tepat berimpit sehingga diperoleh :
Hal ini berarti ∆ ABC dan ∆ DEF sebangun sehingga diperoleh ﮮA = ﮮD, ﮮB = ﮮ E, dan ﮮC = ﮮE Karena sisi-sisi yang bersesuaian sama panjang, maka ∆ ABC dan ∆ DEF kongruen.
- Dua Sudut yang Bersesuaian Sama Besar dan Sisi yang Menghubungkan Kedua Sudut itu Sama Panjang (Sudut, Sisi. Sudut)
Pada gambar di atas, ∆ ABC dan ∆ DEF mempunyai sepasang sisi bersesuaian yang sama panjang dan dua sudut bersesuaian yang sama besar, yaitu AB = DE, ﮮ A = ﮮ D. Dan ﮮB = ﮮE. Karena ﮮA = ﮮD dan ﮮB =ﮮE maka ﮮC = ﮮF. Jadi. ∆ ABC dan ∆ DEF sebangun. Karena sebangun maka sisi-sisi yang bersesuaian rnempunyai perbandingan yang senilai.
Menghitung Panjang Sisi dan Besar Sudut Segitiga-Segitiga kongruen
Dengan menggunakan sifat-sifat dua segitiga yang kongruen dapat ditentukan sisi-sisi yang sama panjang dan sudut-sudut yang sama besar. Contoh: Perhatikan Gambar Diketahui ∆ KNM kongruen dengan ∆ NLM! Panjang KN = 5 cm, KM = l0 cm, ﮮ NKM = 60′. Tentukan panjang sisi dan sudut yang belum diketahui! Jawab: Karena ∆ KNM dan ∆ NLM kongruen maka KM = ML = l0 cm dan NL = KN = 5 cm. Dengan demikian, panjang MN dapat ditentukan dengan menggunakan dalil Pythagoras.
|
0 komentar:
Posting Komentar